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We presen t  a method for  e l ec t r i ca l ly  modell ing nonlinear contact hea t - t r ans f e r  p rob lems  
both with and without taking into account the t he rma l  conductivity of the contact l ayer .  

To de t e rmine  the t e m p e r a t u r e  f ields in bodies of complex configurations,  as  well as  in the solution 
of other  p rob lems  of field theory  with complicated boundary conditions, wide use is being made of the 
method of e l ec t r i ca l  analogy to solve success fu l ly  both l inear  and nonlinear problems.  In par t icular ,  
analog methods a r e  avai lab le  for  solving nonlinear heat conduction with boundary conditions of the types 
I - I u  on ohmic r e s i s t a n c e  networks (R-networks)  [1], based on L iebmann ' s  method, the solution being ob-  
tained i tera t ively .  Re fe rences  [2, 3] a r e  d i rec t ly  concerned with modell ing nonlinear p rob lems  of contact 
heat t r ans fe r .  

The method of success ive  approximat ions  is applied in [2] also,  however,  in cont ras t  to the p roce -  
dure in [1], only the boundary r e s i s t a n c e s  a r e  changed a f t e r  each approximation,  and not all  the r e s i s t ance  
of the R-ne twork  as  was requi red  in [1]. 

The solution given in [3] involved a l inear iza t ion  of the boundary conditions, followed by an in t ro -  
duction of new functions and a r ea s s ignmen t  of the remain ing  boundary conditions. This method r equ i re s  
matching of the s epa ra t e  r e s i s t a n c e s  of the conducting media employed for  modell ing the bodies in contact 
(or a cor responding  se lec t ion of the p a r a m e t e r s  of the R-ne tworks  used in modell ing with networks of 
ohmic re s i s t ances ) .  The solution of nonlinear p rob lems  of field theory  by RC-ne tworks  was,  until recent ly ,  
considered to be unrea l izable  in genera l ,  being poss ib le  only as a r e su l t  of applying specia l  t r a n s f o r m a -  
tions and using specia l  devices  to model  nonlinear boundary conditions [4]. Unfortunately,  the prob lem 
with boundary conditions of the fourth kind remained  unsolved in view of i ts  complexi ty  and the need for  a 
spec ia l  approach.  

In this paper  we p resen t  a method for  modell ing a nonlinear contact h e a t - t r a n s f e r  problem,  based on a 
combined use  of pass ive  models  and appara ta  const ructed on the pr inciple  of e lec t ronic  modelling. 

Since the appara ta  for  modell ing contact  heat t r ans fe r ,  which is our bas ic  concern  here,  a r e  un iver -  
sal ,  i .e. ,  they a r e  equally ava i lab le  for  solving both s ta t ionary  and nonsta t ionary  p rob lems ,  for  s impl ic i ty  
we can, with no loss  in general i ty ,  consider  the s ta t ionary  problem.  

A s s u m e  that  the t he rm a l  conductivity coeff icients  of two bodies in contact a r e  functions of the t e m -  
pera ture :  ~ (t) and ~2 (t). 

Then the s ta t ionary  heat conduction equations for  these  bodies may  be wri t ten as follows: 

a x, (0 xl (0 z~ (t) = 0, 

1 , W = 0 .  

(1) 
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Boundary conditions of the fourth kind, which equate t e m p e r a t u r e s  and heat f luxes on the boundary, 
a r e  usual ly wr i t ten  in the form:  

Ot I = ~(t) 0~n 2' (2) 

t, = t~. (3) 

However,  in recent  y e a r s  the concept of contact heat t r a n s f e r  has been somewhat  broadened (see, for  ex-  
ample ,  [3]) to take into account the t he rm a l  conductivity of the contact l ayer  formed of pro t rus ions  of rough-  
ness .  In this case ,  the boundary condition (2) s tays  the s ame  and the condition (3) is rep laced  by the fo l -  
lowing: 

at i" (4) 
k ( t l  - t~) = - ~1 (t) ~ - n  

We apply to Eqs. (1)-(4) the in tegra l  t r ans fo rma t ions  

i t 

a, = i" ~ , (0  dr; F = .I ~'-(t) tit. (~) 
o 

The Eqs. (1) a r e  thereby converted into Laplace  equations, which may  be s imulated by pass ive  models  (R- 
networks or e lec t r i ca l ly  conducting paper) .  

The boundary conditions (2)-(4) a s s u m e  the form:  

dO ,=  OF , 
an ~n 2 (6) 

5 (r = t~ (F), (7) 

[t~ (,D) - t ~  (p)] = _ a~_. k (s) 

The e lec t r ica l  a r r a n g e m e n t  for  the case  of the boundary conditions (6)-(7) is shown in Fig. 1. 

Between the boundary points of the two pass ive  models  1 and 2 there  is included a rheos ta t  3, which, 
along with the s e r v o m o t o r  4, the different ia l  ampl i f i e r  5, and the two functional t r ans fo rma t ions  6 and 7, 
defines the following sys tem.  Control or  var ia t ion  of the r e s i s t a n c e  3 proceeds  so long as  the equality (7) 
is not achieved,  i .e. ,  as  long as  the e r r o r  signal put out by the different ial  ampl i f i e r  is not equal to zero.  

Since the functions ~l(t) and ~2(t) a r e ,  in general ,  dist inct,  the functions �9 and F may  then so differ  
f r o m  one another  that an a l t e rna te  s i tuat ion a r i s e s ,  wherein  the cur ren t  must  be a flow f r o m  a point with 
a sma l l e r  potential  to a point with a higher potential. This si tuation will prevai l ,  for  example ,  for  a genera l  
d i rect ion of the cu r ren t  f r o m  model  1 to model  2, the function F on the boundary being l a r g e r  than the 
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Fig. 1. Ar rangemen t  for  achieving boundary condi-  
tions of the fourth kind. 
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Fig. 2. P r e l i m i n a r y  a r r a n g e m e n t  of an auxi l ia ry  
s ou rce  with control lable  e l ec t romot ive  force.  
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Fig. 3. A r r a n g e m e n t  for  taking into account the t h e r -  
ma l  conductivity of the contact layer .  

boundary value of the function ~. In this case  the e lec t r i ca l  a r r a n g e m e n t  becomes  somewhat  m o r e  com-  
plicated (Fig. 2) s ince an additional power supply El is introduced with an e l ec t romot ive  fo rce  d i rec ted  
opposite to the e l ec t romot ive  fo rce  of the bas ic  source  E. Moreover  the mechan i sm for  handling the e r r o r  
s ignal  and the control  r e m a i n s  the same.  

Up to a definite instant ,  namely  up to the passage  of the poten t iometer  indicator  to its mean  position 
the a r r a n g e m e n t s  in Figs.  1 and 2 a r e  equivalent.  Af ter  the mean posit ion is passed,  the auxi l ia ry  source  
comes  into play, where  the e l ec t romot ive  fo rce  enter ing the main  c i rcui t  depends on the posit ion of the 
indicator:  the fu r the r  it  p a s s e s  the m e a n  position, the l a r g e r  the e lec t romot ive  force .  

In the case  of the boundary conditions (6) and (8), i .e. ,  when the t he rma l  conductivity of the contact 
l aye r  is  taken into account,  the c i rcu i t  becomes  m o r e  involved (Fig. 3) s ince the e r r o r  signal is produced 
by  compar ing  the cu r ren t  pass ing f r o m  the one model  to the other with a quantity propor t iona l  to the Ieft  
s ide of Eq. (8). This  is  achieved,  in turn,  by introducing with the r e s i s t a n c e  3 a measu r ing  r e s i s t a n c e  8, 
whose vol tage is  fed to the input of the ampl i f i e r  9. The output of the ampl i f i e r  9 is connected with the 
a d d e r - s u b t r a c t e r  10, into which a r e  a lso  fed the s ignals  f r o m  the function conve r t e r s  6 and 7, which con-  
v e r t  the potentials  of the boundary points to conform to the t r ans fo rma t ions  (5). 

Control of the r e s i s t a n c e  3 is effected by the s e r v o m o t o r  4, whose ampl i f i e r  is connected to the out- 
put of the a d d e r - s u b t r a c t e r  10. 

In o rde r  to provide for  the case  where  the cu r ren t  mus t  flow f r o m  a point of lower  potential  to a point 
of higher potential,  both in the a r r a n g e m e n t  shown in Fig. 3 as well  as  in the previous  a r r angemen t ,  an 
aux i l i a ry  sou rce  E 1 is  provided, which, f r o m  some  instant  on, a lso  begins to par take  in the control.  
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Thus, independent of the statement of the problem (with or without taking into account the t h e r m a l  
conductivity of the contact layer), it can be solved through analog devices using one scheme or another 
for handling the boundary conditions. 

The solution of a nonlinear contact heat-transfer problem through the use of the arrangements pro- 
posed above differs advantageously, in our view, from, on the one hand, methods based on Liebmann's 
method, since it does not require recomputation and reassignment of all the resistances of the R-network 
after each approximation, and, on the other hand, the methods of [2, 3], since linearization of the boundary 
conditions is  avoided and the results a re  obtained in one step without involving the method of successive 
approximations. 

t 

x, y, z 

n 

N O T A T I O N  

is the temperature;  
is the thermal conductivity; 
is the heat- t ransfer  coefficients; 
a re  the Cartesian coordinates; 
is the direction of outer normal to body surface. 

S u b s c r i p t s  

1, 2 denote the first  and second contacting bodies, respectively. 
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